Chem. Ber. 100, 2258-2260 (1967)

Hans-Georg Horn und Oskar Glemser

Darstellung von Thiophosphoryltrihydrazid und 1-Phenyl-2-difluorthiophosphoryl-hydrazin 1)

Aus dem Anorganisch-Chemischen Institut der Universität Göttingen (Eingegangen am 23. Januar 1967)

Bei der Umsetzung von Thiophosphoryltrifluorid mit wasserfreiem Hydrazin bzw. Phenylhydrazin entstehen Thiophosphoryltrihydrazid (1) und 1-Phenyl-2-difluorthiophosphorylhydrazin (2).

In einer vorangegangenen Mitteilung ²⁾ berichteten wir über die ¹⁹F- und ³¹P-Kernresonanzspektren einiger Thiophosphorylhalogenide. Unser Interesse galt nun der Hydrazinolyse³⁾ des Thiophosphoryltrifluorids, worüber im folgenden berichtet wird.

Thiophosphoryltrihydrazid (1)

Läßt man SPF₃ auf einen geringen Überschuß an wasserfreiem Hydrazin einwirken, so wird in heftiger Reaktion ein farbloser Festkörper gebildet, der in polaren Lösungsmitteln vollständig löslich ist. Nach mehrwöchigem Stehenlassen im Exsikkator kann aus dem "gealterten" festen Produkt entstandenes Hydrazin-dihydrofluorid herausgelöst werden. Die zurückbleibende, in Wasser schwerer lösliche, farblose, kristalline Substanz ist Thiophosphoryltrihydrazid (1). Ein Lösungsmittel für diese Substanz konnte nicht gefunden werden, so daß kein NMR-Spektrum aufgenommen werden konnte.

1 SP(NH-NH₂)₃

1-Phenyl-2-difluorthiophosphoryl-hydrazin (2)

Im Gegensatz zur Hydrazinolyse von SPF₃ wird durch Phenylhydrazin nur ein Fluoratom substituiert:

$$2 \hspace{.1cm} C_6 H_5 N H - N H_2 + SPF_3 \hspace{.3cm} -\!\!\!\!-\!\!\!\!-\!\!\!\!- \hspace{.1cm} C_6 H_5 - N H - N H_2 \cdot HF + C_6 H_5 - N H - N H - PSF_2$$

Eine Oxydation von 2 zum 1-Phenyl-2-difluorthiophosphoryl-diazen gelang weder mit anorganischen noch mit organischen Oxydationsmitteln.

Untersuchungen an Phosphoryl- und Thiophosphorylverbindungen, V. Mitteil.; IV. Mitteil.; s, l, c, 2).

²⁾ H. G. Horn und A. Müller, Z. anorg. allg. Chem. 346, 266 (1966).

³⁾ R. P. Nielsen und H. H. Sisler, Inorg. Chem. 2, 753 (1963).

Infrarot-Spektren

Eine eingehende Diskussion des IR-Spektrums von 1 findet sich bei Müller, Horn und Glemser⁴⁾.

Die Banden bei 906 und 874/cm im IR-Spektrum von 2 lassen sich mit Sicherheit P-F-Valenzschwingungen zuordnen. Bei anderen Verbindungen mit einer PSF₂-Gruppierung treten ebenfalls bei 900 und 870/cm Banden auf, die $\nu_{as}(PF)$ und $\nu_{s}(PF)$ entsprechen.

NMR-Spektren

In Tab. 1 sind die NMR-Daten von 2 vermerkt. Eine ausführliche Deutung der Ergebnisse ist vor einiger Zeit erfolgt⁵⁾.

Tab. 1. NMR-Daten von 1-Phenyl-2-difluorthiophosphoryl-hydrazin (2). Kopplungskonstanten in Hz, chemische Verschiebungen in ppm

19F			31 P		Intensität		
$J_{ m FH}$	$J_{ m FP}$	δ_{F}	$J_{ m PF}$	δ_{P}	d. Multipletts d. ³¹ P-Signals	Bemerkungen	
_	1113.5	54.3	1112	-65.3	1:2:1	Schmelze [50°]	
4.3	1109.6	56.2	_	_	_	Toluol-Lösg. gesätt.	

Dem Herrn Bundesminister für Wissenschaftliche Forschung, der Stiftung Volkswagenwerk und der Deutschen Forschungsgemeinschaft danken wir für Unterstützung.

Beschreibung der Versuche

Die Infrarot-Spektren beider Verbindungen wurden an KBr-Preßlingen vermessen. Für die Aufnahme der ¹⁹F- und ³¹P-NMR-Spektren wurde ein Spektrometer A 56/60 der Fa. Varian bzw. KJS 125 der Fa. Trüb, Täuber und Co. verwendet. Als äußere Standards dienten CCl₃F bzw. 85-proz. Phosphorsäure.

Die Darstellung von 1 und 2 erfolgte im Bombenrohr unter Kühlung mit einem Methanol/ CO_2 -Bad. Durch kurzzeitiges Erwärmen des Rohres auf ca. -20° wurde die Reaktion in Gang gesetzt. Anschließendes Erwärmen auf 20° (12 Stdn.) bei häufigem Umschütteln ergab vollständige Umsetzung. 1 wurde ohne Lösungsmittel, 2 in Toluol dargestellt. SPF_3 wurde nach Tullock und $Coffman^6$) aus $SPCl_3$ und NaF erhalten.

Thiophosphoryltrihydrazid (1): Auf 0.3 Mol (9.60 g) wasserfreies Hydrazin werden 0.03 Mol (3.48 g) SPF_3 kondensiert. Nach Öffnen des Rohres kann etwas N_2H_4 zurückgewonnen werden. Der entstandene farblose Festkörper löst sich sowohl in Wasser als auch in Aceton. Das geöffnete Bombenrohr wird 12 Wochen im Exsikkator über CaCl₂ aufbewahrt, anschließend 12 Stdn. unter Wasser. Dabei hinterbleibt ein farbloses Produkt, das über CaCl₂ i. Vak. getrocknet wird. Schmp. $142-144^\circ$, Ausb. 18%.

⁴⁾ A. Müller, H. G. Horn und O. Glemser, Z. anorg. allg. Chem., im Druck.

⁵⁾ H. G. Horn, Z. Naturforsch. 21 b, 617 (1966).

⁶⁾ C. W. Tullock und D. D. Coffman, J. org. Chemistry 25, 2016 (1960).

IR (starke Maxima): 3350, 3320, 3260, 3150, 1615/1613, 1390/1387, 1163, 957, 909, 865, 813, 715, 615, 460/cm.

Eine Goniometeraufnahme von 1 und daraus berechnete Netzebenenabstände dienten der weiteren Charakterisierung (Tab. 2).

Tab. 2. Goniometeraufnahme von 1. Strah	lung Cu/Ni
(s = stark, m = mittel, w = schwach, ss = sehr start)	c. sw = sehr schwach)

Nr.	I _{rel.}	d	Nr.	$I_{\rm rel.}$	d	Nr.	$I_{\rm rel.}$	d
1	s	5.832	14	m	3.144	27	s	1.922
2	m	5.634	15	s	3.076	28	w	1.882
3	w	5.126	16	s	3.017	29	sw	1.818
4	m	4.944	17	m	2.777	30	w	1.787
5	m	4.808	18	w	2.708	31	w	1.689
6	m	4.654	19	w	2.648	32 a ₁	m	1.530
7	w	4.484	20	m	2.501	33 a2	w	1.531
8	w	4.214	21	m	2.447	34	w	1.463
9	m	3.985	22	s	2.408	35 α 1	w	1.419
10	SS	3.864	23	S	2.366	36 α ₂	sw	1.421
11	m	3.824	24	sw	2.148	37 a ₁	m	1.411
12	m	3.757	25	sw	2.116	38 α ₂	w	1.411
13	m	3.393	26	w	1.992	_		

1-Phenyl-2-difluorthiophosphoryl-hydrazin (Thiophosphoryl-difluorid-[β-phenyl-hydrazid]) (2): Auf 0.12 Mol (12.6 g) Phenylhydrazin in 60 ccm Toluol werden 0.058 Mol (6.9 g) SPF₃ kondensiert. Nach Beendigung der Reaktion wird die farblose Suspension mehrfach zentrifugiert und das sich absetzende Phenylhydrazin-hydrofluorid öfters mit Toluol digeriert. Im Ölpumpenvak. wird der größte Teil des Toluols der vereinigten Lösungen abgezogen. Anschließend entfernt man bei ca. 10⁻⁴ Torr restliches Toluol und erhitzt das Vorratsgefäß vorsichtig im Wasserbad auf 100°. Dabei geht eine in dicker Schicht grünliche Flüssigkeit über. Schmp. 44–46°, Ausb. 41%.

(Bei Verwendung von 0.11 Mol (15.0 g) Thiophosphoryldifluorid-chlorid an Stelle von SPF₃ und 0.22 Mol (24.1 g) Phenylhydrazin in 80 ccm Toluol konnten 0.78 Mol (16.2 g) 2 erhalten werden.)

C₆H₇F₂N₂PS (208.2) Ber. C 34.61 H 3.39 F 18.23 N 13.46 P 14.81 S 15.40 Gef. C 34.82 H 3.67 F 18.06 N 13.59 P 14.45 S 15.37 Mol.-Gew. 212 (kryoskop. in Nitrobenzol)

IR: 3330 (m), 1600 (m), 1495 (m), 1440 (sw), 1382 (w), 1310 (sw), 1258 (w), 1145 (m), 1078 (w), 1023 (sw), 955 (s), 906 (ss), 874 (ss), 758 (ss), 695 (ss), 427 (ss), 397 (s), 364/cm (ss).

Im Massenspektrum findet man die dem Molekül-Ion zuzuordnende Masse (208), sowie die Massen verschiedener Bruchstücke, z. B. $C_6H_5-NH-NH$, PSF₂, PF₂ etc.

[39/67]